Dokumentnamn Dokumenttyp Datum

Eid 2.0 Sign Support Deployment Manual Manual 2013-05-20
Upprittad av Godkind av Version
Stefan Santesson 0.3

Eid 2.0 SignSupport Deployment Manual

G e)
\
= a0 ="

T i =S Sign request “ Central Signing

_E E Service |
] -

N
Iwant to XHTML Sign request
sign " form
P A [
/ e ‘ - ~ Service Provider
| /" Service Provider
Web Service . Service Provider
= 9 Central Signing
v T i Dotc)um_e"td > Support
= 5 ., tobesigne Web Service
= |
K [4 (a2
| o XHTML Sign request form \
‘ 5 =l &

Table of content

O 0 1 =T U 3
I Y=) o0) 00 =) 4L 3
2 Installation and deployment..........ccccoiiiiiiiiiiiiiiiiiiiiininnne 3
00 R 7' 1= o (PP 3

2.1.1 Tomcat SErver CONfIGUIALIONucceeeereeresseresssesssesissesissssisssessssessssssasssssssssssssessssesasssssssssssssessnss 4
3 Configuration fillescccveeiiiiieiiiiiiciirrcerriec e cer e e reeee e s enn s e sesnsseseensessennnnnns 5
3.1 General configuration (SpSupportConfigjSOn)eeeemeerrmeerseersseermeesssssseesseesseesssesssessaees 6
3.2 Attribute map configuration (AttrMap.JSON) ...coereereresmeersmeesseersseersseessessseesseesssesssesssessaees 7
R J0 T O3 5 04 (0% U cIB o) ol =><q T) o o 11
4 Using the Web Services APlccociiiiiiiiiiiiiiiiiinieeeeeeeeessssssssssesseneenees 11
5 Installing and using the Java APl ... i rreeeecsrenneseensnseens 11
6 Example implementation of the APls...........coieeeiiiiieiiiiiiccrrrcerreeeerreeeereeaee 12

1 Overview

It is essential to follow the installation and deployment instructions in this
document in order to run the provided services. Failing to do so may
prevent services from running properly.

The sign support service provide functionality for signing documents using a
deployed central signing service within Testbdadden for Eid 2.0

This service is accessible through a Web Services API that is specified through a
WSDL, available from the service at:

{path to service}/SpSupportWs?wsdl

To support legacy implementations of this support service, a Java API is also
available. However, support for this API may be phased out.

1.1 Server components
Signature validation service

CsSpSupport.war Sign support service

2 Installation and deployment

2.1 Generic

Deployment and configuration of the signature support service should be done in
the following logical order:

1. Configure the application server where the support service is to be
deployed (Provided examples describes procedures for setting up a
Tomcat server)

Deploy the signature support service and start it.

Configure the configuration files of the support service.

Stop and restart the web service.

Export the signature certificate created by the support service and send it
to be installed in the central signing service.

v Wi

More elaborate details are provided in the following subsections.

2.1.1 Tomcat server configuration

The following configurations should be done to the application server (servlet
containers) where a signature validation service and policy administration
service are deployed.

The configuration steps are described for deployment on an Apache Tomcat
server.

2.1.1.1 Adjusting the heap memory

Heap memory need to be set to suitable size that allows normal operations. The
required amount of heap memory may vary according to the workload of the
server, and the size of documents it is handling. The following settings is an
example on how to set heap memory.

Create new file: /%CATALINA_HOME%/bin/setenv.sh (Unix) or
setenv.bat (windows) or amend any existing version of this file with the
following statement:

‘ CATALINA_OPTS="-Xms512m —Xmx2048m"

(512Zmb committed memory and 2048mb max heap memory)

2.1.1.2 Perm Gen memory

The Permanent Generation memory (PermGen) holds metadata about all java
classes. It is normally not problem to run the Signature support service in
Tomcat using standard PermGen memory settings. However, if have other
applications running on the same server, then adding sign support may cause
you to run out of PermGen memory. In such case, the PermGen memory space
needs to be increased. This is done by adding the following option to
CATALINA_OPTS in the setenv.sh file described in the previous section:

\ —XX:MaxPermSize=256m

The whole setting could look like:

\ CATALINA_OPTS="-Xms512m —Xmx2048m" —-XX:MaxPermSize=256m

Note: the values above are only examples. You need to determine what memory
size that is appropriate for your environment.

2.1.1.3 Adding class path to the external libraries:

The sign support service makes use of libraries that may not not packaged with
the .war deployment builds as doing so may causes problems with Tomcat class
loading.

The following library must be provided outside of the .war:
¢ The IAIK Crypto Library (iaik_jce_full.jar)

This library needs to be added to the Tomcat class loader separately, which may
be accomplished through the following steps:

1) Edit the file: /%CATALINA_HOME%/conf/catalina.properties

Add the following information to the “common loader” settings:

%LOCATION_OF_LIBS%/*.jar

where %LOCATION_OF_LIBS% is the location of added external
library .jar files (e.g. “/Library/TomcatLibs").

Example:

common.loader=${catalina.base}/lib,${catalina.base}/lib/*.jar,${ca
talina.home}/lib,${catalina.home}/lib/*jar,/Library/TomcatLibs
/*.jar
2) Place the referenced jar files in the specified location (e.g. in
“/Library/TomcatLibs/” following the example above).

Note: The IAIK library is a licensed product that can be freely used for evaluation
and test purposes. A future release of the support web service can be made
without using this library.

The IAIK library needed for the current release of this support service is located
in the bundle under the folder “Libs”

3 Configuration files
Configuration and data files are located under the home directory for data
storage.

The directory for data storage is set in the web.xml deployment descriptor file
for the deployed service under the context-param “DataDir”:

<?xml version="1.0" encoding="UTF-8"?>
<web-app "3.0" "http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
"http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javace/web-
app_3 0.xsd">
<description>Service Provider support service. This service generates signing requests and handles
signing responses from a central signing service</description>
<display-name>Central Signing SP Support service</display-name>
<context-param>
<description>Storage data directory</description>
<param-name>DataDir</param-name>
<param-value>/Library/Application Support/EidSigServer/SpSupport</param-value>
</context-param>
<context-param>
<description>Max sign session length in minutes</description>
<param-name>SignSessionMaxAge</param-name>
<param-value>10</param-value>
</context-param>
<listener>
<listener-class>com.sun.xml.ws.transport.http.servlet. WSServletContextListener</listener-class>
</listener>
<servlet>
<servlet-name>SpSupportServlet</servlet-name>

<servlet-class>com.aaasec.sigserv.csspsupport.SpSupportServlet</servlet-class>

</servlet>

<servlet>
<servlet-name>SpSupportWs</servlet-name>
<servlet-class>com.sun.xml.ws.transport.http.servlet. WSServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>SpSupportServlet</servlet-name>
<url-pattern>/spsupport</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>SpSupportWs</servlet-name>
<url-pattern>/SpSupportWs</url-pattern>

</servlet-mapping>

<session-config>
<session-timeout>

30

</session-timeout>

</session-config>

</web-app>

After deploying this service, set the DataDir (if necessary) to a suitable directory
of your service and make sure that the deployed service has read and write
access to this directory. Default configuration files (described in the following
subsections) and a service certificate will be created automatically in this
directory when the SpSupportServlet of this webb application is called for the
first time.

The context-param “SignSessionMaxAge” can usually be left unchanged. This is
the max age before data related to a particular sign request is deleted from the
support service. The value is specified in minutes.

3.1 General configuration (spSupportConfig.json)

This config file specifies a number of important parameters for the support
service:

{

"spEntityld": "https://eid2cssp.3xasecurity.com/sign",

"spServiceReturnUrl": " https://eid2cssp.3xasecurity.com/sign/SpServlet ",
"sigServiceEntityld": "https://eid2csig.konki.se/sign",

"sigServiceRequestUrl": "/CsSigServer/SigRequest",

"validationServiceUrl": "https://tsltrust.3xasecurity.com/sigval/TTSigValServlet",
"certType": "QC/SSCD",

"sigAlgo": "http://www.w3.0rg/2001/04/xmldsig-more#rsa-sha256",

"loa": "http://id.elegnamnden.se/loa/1.0/loa3"

}

‘ Parameter Value

spEntityld The SAML federation EntityID of the service provider
that requests signing by the signature service. This is a
default value that can be overruled by values supplied
through the HTTP or Java APIL.

spServiceReturnUrl The return URL where the signing service should send
back the sign response message. This is a default value
that can be overruled by values supplied through the
HTTP or Java APL

sigServiceEntityld The SAML federation EntityID of the central signing
service

sigServiceRequestUrl The URL where requests to the central signing service
should be sent:

validationServiceUrl A URL to a TSL Trust validation service capable of
validating the signed document and returning a
validation report. Such service is available from
"https://tsltrust.3xasecurity.com/sigval /TTSigValServ
let". This service can validate signatures produced by
the test signature service when used with the
validation policy “All EU Trust Services”.

certType The type of the requested certificate, having one of the
following supported values:

* “QC” for a Qualified Certificate

e “QC/SSCD” for a Qualified Certificate where the
private key is declared to be protected by a
Secure Signature Creation Device.

* “PKC” for a regular Public Key Certificate
(which is not declared to be a Qualified
Certificate.

sigAlgo The default requested signature algorithm for
requested signatures represented by an URI identifier.

loa The requested Level Of Assurance with which the
signer must be identified when signing. This is an URI
identifier of the Authentication Context Class that
represents the requested level of assurance in the
SAML assertion used to authenticate the signer.

3.2 Attribute map configuration (attrMap.json)

This configuration file allows specification of which attributes that the
requesting service prefers/requires in the signer’s identity of the generated
signer certificate:

{
"attrMap": {

"rdn:2.5.4.5": {
"required": true,

"friendlyName": "serialNumber",
"samlAttributeNames": [

{
"name": "urn:o0id:1.2.752.29.4.13",
"order": 0
a
{
"name": "urn:0id:0.9.2342.19200300.100.1.3",
"order": 1
}
]
i
"rdn:2.5.4.6": {

"required": true,
"friendlyName": "country",
"defaultValue": "SE",

"samlAttributeNames": [

{
"name": "urn:o0id:2.5.4.6",
"order": 0
}
]
i
"rdn:2.5.4.42": {

"required": true,
"friendlyName": "givenName",
"samlAttributeNames": [

{

"name": "urn:o0id:2.5.4.42",
"order": 0

}
]
|2
"san:1": {
"required": false,

"friendlyName": "e-mail",
"samlAttributeNames": [

{
"name": "urn:0id:0.9.2342.19200300.100.1.3",
"order": 0
}
]
i
"rdn:2.5.4.3": {

"required": false,

"friendlyName": "commonName",
"samlAttributeNames": [
{
"name': "urn:0id:2.16.840.1.113730.3.1.241",
"order": 0
a
{
"name": "urn:o0id:2.5.4.3",
"order": 1
}
]
i
"rdn:2.5.4.4": {
"required": true,
"friendlyName": "surname",
"samlAttributeNames": [
{
"name": "urn:o0id:2.5.4.4",
"order": 0
}
]
}
}

A certificate name type identifier representing a certificate name type, which is
requested to be present in the signer certificate, specifies each object in the
attrMap.

The certificate name type identifier is a colon separated string holding two
parameters, where the first parameter is one of the values “rdn”,”san” or “sda”.

Their meaning and it’s associated second parameter is given by the following

table:

‘ JSON object Meaning Second parameter
rdn The certificate name type is a An object identifier (OID)
relative distinguished name identifying the requested
attribute stored in the subject attribute (e.g. “rdn:2.5.4.4")
field
san A subject alternative name stored If the subject alternative

in the subject alternative name
extension

name is of type
GeneralName, then this
parameter is the explicit tag
index for the name type.
The only supported index is

1, representing an e-mail
address, e.g “san:1”.

If the subject alternative
name is an OtherName
type, then this parameter is
an object identifier (OID)
identifying the other name

type.
sda A subject directory attribute An object identifier (OID)
placed in the subject directory identifying the attribute
attributes extension. stored in the subject
directory attributes
extension.

The value of each certificate name type object is a sequence of the following JSON
objects:

‘ JSON object Value

required This parameter is set to true if the attribute must be
present in the signer certificate, otherwise false (Note
that the value is of type Boolean and thus provided
without quote characters).

friendlyName A friendly name of the attribute to be used for Ul
purposes.
defaultValue A default value suggested by the requesting service.

Whether this suggested default value is accepted or not
by the signing service is a matter of policy at the
discretion of the signing service.

samlAttributeNames An array of SAML attribute names that is supposed to be
the source of the attribute value (as it is imported from
the SAML assertion provided for the user when the user
authenticates to the signature service). Each SAML
attribute names are specified through a “name” and
“order” JSON obiject.

name A string representation of the SAML attribute name
expressed as a URL Object identifiers are specified as a
URN, having the Name Space Identifier “oid”.

order An integer representing the preferred order of this
SAML attribute as value source for the requested
certificate attribute. Attributes with lower order integer
values have priority over attributes with higher order

10

values.

3.3 Certificate for export

The signature certificate of the support service is located in the same “conf”
folder as the configuration files above. The certificate is provided in the file
“spCert.crt”.

4 Using the Web Services API

The sign support Web Service operations are described in a WSDL file available
from:

{path to service}/SpSupportWs?wsdl

When the provided .war is deployed on a Tomcat server, it will typically be
available from the local server at:

http://localhost:8080/CsSpSupport/SpSupportWs?wsdl

The Web service API and its operations are described in a separate API
specification.

5 Installing and using the Java API

The servlet provided by the deployed web service receives requests and return
responses using standard HTTP GET and POST requests.

This API was the original API that was provided with this support service. This
APl is less functional than the fully developed WS API and this API may be
removed in future releases of this sign support service. It is therefore advisable
to use the WS API instead.

IN this Java API, requests and responses provided by this service allows a
consuming service to submit a document for signing and receiving a signrequest
prepared for the signing service. In addition it allows submission of a
corresponding sign response and receiving back a signed version of the
submitted document.

This java APl is provided by the java class “SignSupportAPLjava”.

In addition to this two additional data java classes are provided to support
conversion between JSON and Java objects:

* ServiceStatus.java
¢ IdAttribute.java

These classes are aimed to be used together with the gson library from
google.code:

11

<dependency>
<groupId>com.google.code.gson</groupld>
<artifactId>gson</artifactId>
<version>2.1</version>

</dependency>

Having the 2 provided data classes in your code, allows you to convert the
received status message received upon submitting a signResponse message, into
a java object, by using gson to convert the J[SON string to a ServiceStatus object.

The Java API is documented using JavaDoc in the provided bundle.

6 Example implementation of the APIs

An example implementation of the WS and Java APl is provided in the bundle as
a simple MAVEN project in the “SignDemo” folder.

12

